MIXING OF MUTUALLY SOLUBLE LIQUIDS
IN TURBULENT FLOW IN A PIPE

V.I. Maron UDC 532.507

The problem concerned with mixing of mutually soluble liquids in turbulent flow in a pipe
[1-11] is considered. To describe the distribution of concentration in the region of mixture,
taken average across the section of the pipe, we use a model based on a one-dimensional
model of the type of heat-conduction equation with an effective coefficient which, as tests
show, is different from the coefficients of molecular and turbulent transfer. The dimension-
less value of this coefficient depends on a number of parameters, such as the Reynolds
number calculated for one of the liquids, roughness, ratio of the densities and viscosities

of the liquids, as well as on the concentration, gradients of concentration, etc. These rela-
tionships can be established either by means of tests or on the basis of theoretical consider-
ation of the mixing phenomenon, In this paper we theoretically derive a dispersion model
with an effective diffusion coefficient which depends on Reynolds and Schmidt numbers, as
well as on roughness.

1. We consider the combined turbulent motion of two mutually soluble liquids in a circular pipe, when
one of them moves after the other or when a portion of one liquid is propagating in the basic stream of the
other liquid. During such a motion, because of convective transfer of matter with a velocity varying across
the diameter of the pipe, and turbulent diffusion, mixing of the liquids and formation of a mixture region
separating the homogeneous components take place, In a fully developed turbulent flow, stratification of
the liquids in the gravitation field will be insignificant because of the intensity of mixing., Therefore the
flow is taken as axisymmetric.

The axisymmetric concentration distribution in turbulent flow in a circular pipe is described by a dif-
fusion equation of the following form: ’

‘de dc 1 @0 dc
s+ UM o = ——~(rD—aT)

o . a .1)
c=c(t,z, 1), t>0, 0<r<le, —oolblzldl+>
Here c is the averaged concentration, U is the mean velocity of flow, U® (r) is the profile of the aver-
aged velocity, D (r) is the transfer coefficient, ¢ is the radius of the pipe, and x and r are the spatial vari-
ables. The x axis of the cylindrical coordinate system coincides with axis of the pipe and is directed to-
wards the motion of the stream,

A term taking into account the longitudinal diffusion is absent from the right side of this equation.
Taylor showed that the longitudinal diffusion need not be considered, when determining the concentration
profile in the first approximation. In the following, after a one-dimensional model has been constructed, it
will not be difficult to take into account the correction to the virtual coefficient from the axial diffusion.
This correction turns out to be very small [2],

The initial and boundary conditions of the problem, when the flow of the material on the inner surface
of the pipe is zero, have the following form:
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To these conditions we must add the corresponding limiting conditions for x =b and x = d,
We introduce the dimensionless variables

'c=D9/a2t, t=1=z/a, n=r/la 1.3)

By means of these variables the diffusion equation and the limiting conditions of the problem are writ-
ten in the form

de de g 1 8 g?‘
737+Y7€+Y[®(ﬂ)~1]79g——n~3n—(n0* ﬁn)
c=c(t, &), Y =aU/Dy Dy=DJDy

dc 9
=00 @ 35| =] =0 1.4)

Here D, is a fypical value of the transfer coefficient.

The terms on the left and right sides of Eq. (1.4) are multiplied by 27 and are integrated with respect
to n between the limits 0 and 1. We have

. 1
a3
Z—g—+Y%g:qLZY-éE-S[d)m)_1](c_e)qiq=0 (1.5)
0
1
0=2[cqdn, 0=0(r,%
[

Here 6 is the concentration of admixture, average across the section of the pipe, which depends only
on the variables 7 and ¢, Combining the terms of Eqs. (1.4) and (1.5), we obtain the following eguation for
the function ¥ =c — 6

1

v 1 @ vy a
*ar———"—‘gﬁ'(ﬂD*_mT)=2Y-6—5~§[37(Tl)—‘1]ly7}dﬂ
il av
—Y @)~ 1] 5 ~ ¥ 5 (1.6)

Equation (1.6) is considered as a nonhomogeneous equation with a free term on the right side, and is
solved by the method of successive approximations.

2. Taylor took the averaged concentration ¢, equal to the mean concentration ¢, as the first approxi~
mation when determining the concentration profile, Justification for such an approximation is the fact that
for instants of time which are much larger than the diffusion constant a%/ Dy, because of the radial diffusion,
inhomogeneities of the concentration in the cross section of the pipe are nearly levelled out, and in the flow
there are only insignificant deviations of the concentration from the average value in the cross section of
the tube. These deviations are caused by the inhomogeneous convective transfer of the admixture due to the
difference of the averaged and mean velocities,

We use this approximation to find the subsequent solutions, With this aim we substitute ¢ = 84 in the
right side of Eq. (1.6). As a result of the substitution, we obtain the following equation:

a1 9 8y 28
W_Tﬁ.(nn*w)=__y[cb(n)—1]-&~ (2.1)

We seek the solution of this equation which satisfies the limiting conditions

_ Y| _e¥|
Vi=0 ks N 0 (2.2)

When solving the problem (2.1), (2.2), in contrast to the Taylor solution, we retain the local time-
derivative of the function in the right side of Eq. (2.1), The sought solution has the form
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Here Xy and o, are the eigenfimctions and eigenvalues of the following Sturm—Liouville problem:
[zD ]+a2X 0, X'(0)=Xx" (%} =0 2.4)

The transfer coefficient D, is assumed to depend only on the radial coordinate. With the aid of the
solution (2.3) we can approximately find the concentration profile in terms of the unknown function 0 (7, ¢).
To determine the mean concentration § in the section of the pipe, the solution (2.3) is substituted into the
integral of the third term of Eq. (1.5).

As a result, we obtain an equation for determining the concentration 6 (7,#). This equation has the
form

) 3 T %0
+Y_“—4Y22_TIXW 2 —‘a_rSexP[_“xrﬁ(T_"sn agzi)d ] (2.5)
. 0

It is not difficult to show that the solutions of this equation for 7— « are asymptotically close to a
diffusion equation of the following form:

39
EF’I'Y a =4r 2 ) 2uX R aaz (2.6)

3. We calculate quantity an which enters the expression for the diffusion coefficient. With this aim
we substitute the function X, determined from Eq. @2.4) into the integrand of (2.3). We have

1

an =~ s o (102 S @ )~ t1an 1)
23 0

Integrating by parts, we obtain

1
1 ’ ’
4= 7oz 10X, () () 3.2)

0
The coefficient D, equals the sum of the molecular and turbulent diffusion coefficients

Dy =D/Dy+ D,/ D, (3.3)

In a turbulent flow the transfer of matter, heat, and impulse takes place almost with equal intensity.
Therefore, according to the well-known Reynolds analogy, the coefficients characterizing the intensity of
transfer of these quantities are taken as equal,

On the basis of this analogy, using the Boussinesq expression, we write the coefficient of radial
turbulent diffusion in the form

Dy = — 24 1y ()2 (3.4)

With the expressions (3.1), (3.4) taken into account, we write the expression for ay in the following
form:

n=-21—fD£San (M) D" (m) dn — 5= X, (1)]

4. The unknown solution of the Sturm— Liouville problem, Xpn(n), enters the expression for calculat-
ing the quantity @, and the other expressions derived above. The difficulty of solving the problem (2.4) is
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caused by the fact that the radial coefficient of turbulent diffusion depends on the variable z, The experi-
ments by Laufer and Nunner [12], as well as the investigations carried out in [13,14], allow us to establish
the character of this dependence. The coefficient of radial diffusion varies in the most substantial manner
close to the inner surface of the tube, in a region which is the narrower, the larger is the Reynolds number,
while in the core of the turbulent flow occupying an overwhelming proportion of the pipe cross section the
coefficient of turbulent diffusion is almost constant, Such a character of dependence of D, on z provides
justification, when solving the problem (2.4), for taking the coefficient of radial turbulent diffusion in the
whole section of the pipe as constant and equal to its mean value in the section of the pipe. It is natural to
take the typical value of the diffusion coefficient as its mean value in the section of the pipe, i.e., to take
D, equal to unity. For a constant value of D, we easily find the eigenfunctions and eigenvalues of the
Sturm—Liouville problem (2.4). We have

Xy (2) = Jo(2an2h), Ty (o) =0 (4.1)

Here J, (z), v =0, 1 are Bessel functions of the first kind. The square of the norm of the eigenfunc-
tions thus found equals

I X P =1s] o (%)

We calculate the effective diffusion coefficient, We have

K a,’ ula?
e = 16Y27§1—————%2J02 oy =4 gipe
- 1
t DU , ?
X El 7 [1 + wado (@) (S’ﬂ-h (otgm) D (n)dn] 4.2}

In this expression the second term inside the square brackets is due to molecular diffusion. The first
eigenvalue is o, = 3.83, the values of the subsequent roots are 7.02, 10, 17, etc. The eigenvalues increase
$0 rapidly that the computation of the series (4.2) can be confined to the first term. We have

1

K u 4 DU , 2

Dy AV it |+ ey § W ) @ (1) dn @.3)
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To calculate the integral inside the square brackets, we must choose a profile of the averaged velocity
of the turbulent flow, We use, for example, the universal law of velocity distribution for which the function
® (n) has the form

Q) =Uy/ U+ (25u, /U) x In (1 —1q)

Here Uj is the velocity of flow on the axis of the pipe,

We substitute the derivative of this function into the integrand and carry out integration by a numeric-
al method. We obtain

1
{J.(3.83m) @' () dn ~ — 1.65u,, / U (4.4)
¢

Taking into account this result, and also the fact that J 0(3.83) ~ —0.401, we rewrite the expression
4.3) as follows:

K

D—ozécY2

wwroy | ) (4.5)

To calculate the effective diffusion coefficient according to the expression (4.5), we must find the
value of the coefficient D). To determine the value of D, we use the profile of the coefficient of radial turbu-

lent diffusion from Taylor's paper. In this case

D, =0.052 u,a+D



Substituting the value of D; into the expression (4.5}, we obtain the expression for the dimensionless
value of the effective diffusion coefficient ’

[ 53(?R4e )VT’ Se = 5 (4.6)

Here A is the hydraulic resistance. This expression differs from the well-known Taylor expression
by the additional term which takes into account the dependence of the effective coefficient on the Schmidt
number,

The method used to derive the expression (4.6), in contrast to the method used in Taylor's work, is
not comnected with the choice of this or that law of distribution of the averaged velocity, This circumstance
allows us to generalize the relationship thus found for the region of large Reynolds numbers for which the
velocity distribution and hydraulic resistance essentially depends on the roughness. With this aim, just as
it was done in [15], we represent the coefficient of radial turbulent diffusion in the form of a sum of the co-
efficient of turbulent diffusion in a smooth pipe and the coefficient of turbulent diffusion depending on the
roughness, The latter coefficient has the form

Dg=0.39u,0 [s——R—s—(—g-) ] ©.0340.97) =% @.m

Here € is the relative roughness.

The average value of this coefficient for a cross section of the pipe is

Dy = 0.%65u,0 e — i ( A )"”] @.8)

Taking into account this equation, we write the coefficient D, for flow in a rough pipe as follows:

Da=[6.052+0.265(e —%(%)—"’)] u.a 4.9)

i

This expression is substituted into (4.5). As a result, we obtain the equation for the effective diffusion
coefficient which generalizes the Taylor expression for the case of flow in rough pipes

Hrsale-w 3T .10)

The value of the hydraulic resistance for various Reynolds numbers and parameters of relative rough-
ness is represented in the form of tables in [15]. Numerous expressions for the hydraulic resistance of dif-
ferent tubes are presented in the book [16].

5. Taking into account the expression derived above for the effective coefficient of turbulent diffusion
(4.5) and also the rapid growth in the eigenvalues ay, we write Eq. (2.5) in the following form (the molecular
transfer is not taken into account)

6(-) ¢ 0%
——~u — a2 (t—s) ds
oo - ace—0] 22 o
4u ta?
= a1‘U2D02 Yz

In a coordinate system moving with the mean velocity of the flow, Eq. (5.1) has the form
——=u2§ exp[—-oclz(“c—s)] ds, z=¢t— YT (5.2)
b

Here z is the distance in the moving coordinate system. We differentiate with respect to 7 the terms
on the left and right sides of Eq. (5.2). As a result of some simple transformations we obtain the following
equation:

320 g 90 920
o T g =% 5 : (5.3)
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This is the so-called telegraph equation which in the given case describes the distribution of the mean
concentration in the section of the pipe. In contrast to the diffusion equation of Taylor, Eq. (5.3) is of the
hyperbolic type.

From the solution of this equation we obtain the final velocity of propagation of the admixture toward
both sides from the zero section, This velocity equals .

It can be shown that the continuous part of the solution of Eq. (5.3) differs from the solution of Taylor's
equation at the beginning of the mixing process, when 7 < 1. This difference is the more substantial, the
smaller is 7, For a mixing process in main pipe lines, where concentration distribution for 7> 1 is of
practical interest, this difference between the distribution in the initial stage of the process is not import-
ant. Therefore we can use Taylor's model, making use of the expression (4,10) derived here for the ef-
fective coefficient. However, when investigating the process of mixing in petrochemical reactors of a
tubular type, where the time of the mixing process, 7, is comparable with unity, it is advisable to use the
solution of the dispersion equation (5.3). The form of the solution of Eq. (5.3) depends on the form of the
signal at the input of the reactor, However, in any particular case the finding of the solutions presents no

"special difficulties,
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