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The problem concerned with mixing of mutually soluble liquids in turbulent flow in a pipe 
[1-11] is considered.  To descr ibe  the distribution of concentration in the region of mixture,  
taken average ac ros s  the section of the pipe, we use a model based on a one-dimensional  
model of the type of heat-conduction equation with an effective coefficient which, as tests  
show, is different f rom the coefficients of molecular  and turbulent t rans fe r .  The dimension-  
less  value of this coefficient  depends on a number  of pa ramete r s ,  such as the Reynolds 
number  calculated for one of the liquids, roughness,  rat io of the densities and viscosi t ies  
of the liquids, as well as on the concentration,  gradients of concentration,  etc. These r e l a -  
tionships can be established ei ther  by means  of tes ts  or  on the basis of theoret ical  cons ide r -  
ation of the mixing phenomenon. In this paper we theoret ical ly  derive a dispersion model 
with an effective diffusion coefficient which depends c~ Reynolds and Schmidt numbers ,  as 
well as on roughness .  

1. We consider  the combined turbulent motion of two mutually soluble liquids in a c i rcu la r  pipe, when 
one of them moves after  the other or when a portion of one liquid is propagating in the basic s t r eam of the 
other liquid. During such a motion, because of convective t ransfer  of mat te r  with a velocity varying across  
the d iameter  of the pipe, and turbulent diffusion, mixing of the liquids and formation of a mixture region 
separat ing the homogeneous components take place.  In a fully developed turbulent flow, strat if icat ion of 
the liquids in the gravitat ion field will be insignificant because of the intensity of mixing. Therefore  the 
flow is taken as ax i symmet r i c .  

The ax i symmetr ic  concentrat ion distribution in turbulent flow in a c i rcu la r  pipe is descr ibed by a dif- 
fusion equation of the following form:  

Oc Oc l 0 {rD Oc ~ 
Ot ~- g ~  (r) az  r Or [ ar } (1.1) 

c = c ( t , x , r ) ,  t > 0 ,  O < r < a ,  - - c r 1 6 2  

Here c is the averaged concentrat ion,  U is the mean velocity of flow, U~ (r) is the profile of the ave r -  
aged velocity,  D(r) is the t r ans fe r  coefficient,  a is the radius of the pipe, and x and r are  the spatial v a r i -  
ables .  The x axis of the cyl indrical  coordinate sys tem coincides with axis of the pipe and is directed to-  
wards the motion of the s t r eam.  

A t e r m  talcing into account the longitudinal diffusion is absent f rom the right side of this equation. 
Taylor  showed that the longitudinal diffusion need not be considered,  when determining the concentration 
profile in the f i rs t  approximation.  In the following, after  a one-dimensional  model has been constructed,  it 
will not  be difficult to take into a c c o m t  the cor rec t ion  to the virtual  coefficient f rom the axial diffusion. 
This cor rec t ion  turns out to be very  small  [2]. 

The initial and boundary conditions of the problem, when the flow of the mater ia l  on the inner surface 
of the pipe is zero ,  have the following form:  
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~9C r=O ~3C I c (0, x, r) = c0 (x), ~T = -gTr .... = 0 (1.2) 

To these  condi t ions  we m u s t  add the c o r r e s p o n d i n g  l imi t ing  condi t ions  for  x = b and x = d. 

We in t roduce  the  d i m e n s i o n l e s s  v a r i a b l e s  

"r -= D o / a2t, ~ = z / a ,  ~1 = r / a (1.3) 

By m e a n s  of  these  v a r i a b l e s  the diffusion equat ion and the l imi t ing  condi t ions  of the p rob l em a r e  w r i t -  
ten in the f o r m  

ac a~ a~ t a (  0r 

c = c ( ' c , ~ , ~ l ) ,  Y = a U / D o ,  D ,  = D / D o  

a~ I a~ = 0 c I ~ o  = Co (~), -~ I~=o = ~- ~=~ (1 

H e r e  D O is a typ ica l  va lue  of the t r a n s f e r  coe f f i c i en t .  

The t e r m s  on the left  and r igh t  s ides  of Eq .  (1.4) a r e  mul t ip l i ed  by  2~ and a r e  in t eg ra t ed  with r e s p e c t  
to  ~/ be tween the l imi t s  0 and 1. We have  

l 
a0 00 
-fig q- Y-g~-~ -F 2Y i~- i [r (rl) - i ] (c  --  O) rl i q = 0 

0 
1 

0=2~c~ 1d~1, 0=0('~,~) 
0 

( 1 . 5 )  

Here  0 is the concen t r a t i on  of admix tu re ,  a v e r a g e  a c r o s s  the sec t ion  of the pipe,  which depends only 
on the  v a r i a b l e s  z and ~ .  Combin ing  the t e r m s  of E q s .  (1.4) and (1.5), we obtain the fol lowing equat ion for  
the funct ion ~I, = e - 0 : 

1 

a~ ~ @ ~D.-g~- ~ 2 Y  
0 

0c OW 
- Y [(P (n) - 11 ~ - Y 0 (  ( 1 . 6 )  

Equat ion (1.6) is c o n s i d e r e d  as  a nonhomogeneous  equat ion with a f r ee  t e r m  on the r igh t  s ide ,  and is 
so lved  by the me thod  of s u c c e s s i v e  a p p r o x i m a t i o n s .  

2. T a y l o r  took the a v e r a g e d  concen t r a t i on  c,  equal  to the mean  concen t r a t i on  0 ,  as  the f i r s t  a p p r o x i -  
mat ion  when d e t e r m i n i n g  the c o n c e n t r a t i o n  p ro f i l e .  Jus t i f i ca t ion  for  such  an approx ima t ion  is the fact  that  
for  ins tan t s  of t i m e  which  a r e  much  l a r g e r  than the di f fus ion cons tan t  a 2 / D o ,  b e c a u s e  of the r ad i a l  diffusion,  
i nhomogene i t i e s  of the concen t r a t i on  in the c r o s s  sec t ion  of the pipe a r e  n e a r l y  l eve l led  out, and in the flow 
t h e r e  a r e  only  ins ign i f ican t  devia t ions  of the concen t r a t ion  f r o m  the  a v e r a g e  value  in the c r o s s  sec t ion  of 
the tube.  These  devia t ions  a r e  c a u s e d  by the inhomogeneous  convec t ive  t r a n s f e r  of the admix tu re  due to the 
d i f f e r ence  of the a v e r a g e d  and mean  ve loc i t i e s .  

We use  this  app rox ima t ion  to find the subsequen t  so lu t ions .  With this a im  we subs t i tu te  c = O ~ the 
r igh t  s ide  of Eq.  (1.6). As a r e s u l t  of the subst i tu t ion,  we obtain the fol lowing equat ion:  

0~F i 0 ~F 00 
~ - )  = - [ •  (n)  - l ] ~ -  ( 2 . 1 )  av ~1 a~ (~ID, Y 

We s e e k  the solut ion of this  equat ion which  s a t i s f i e s  the l imi t ing  condi t ions  

I~=0 = 0, - ~ -  0n 0 (2.2) 

When so lv ing  the p r o b l e m  (2.1), (2.2), in c o n t r a s t  to  the T a y l o r  solut ion,  we re ta in  the loca l  t i m e -  
de r iva t ive  of the funct ion in the  r igh t  s ide  of Eq.  (2.1). The sought  solut ion has  the f o r m  



co 

00 
o (2.3) 

'14 
i 2 a~, = ] Xn(z)[ffP(z)-- t]dz ,  z = - 4 - ~  t 

0 

Here  X n and ~n a r e  the eigenfunctions and e igenvalues  of the following S t u r m - L i o u v i l l e  p rob lem:  

L ~ - , - ~ j  + =*x = o, x ,  (0) = x '  = 0 (2.4) 

The t r a n s f e r  coeff ic ient  D ,  is a s s u m e d  to depend only on the radia l  coordinate .  With the aid of the 
solution (2.3) we can approx ima te ly  find the concentrat ion profi le  in t e r m s  of the unknown function 8 (~, ~ ). 
To de t e rmine  the mean concentra t ion 8 in the sect ion of the pipe, the solution (2.3) is subst i tuted into the 
in tegra l  of the th i rd  t e r m  of Eq.  (1.5). 

As a resu l t ,  we obtain an equation for  de termining  the concentrat ion 0 ( r ,  } ). This equation has the 
f o r m  

0~: + Y - ~  = 4 Y ~ 1  o i exp [ _  a ~ (  ~ _ s)] ~ dsJ (2.5) 
0 

It i s  not difficult to show that  the solutions of this equation for  r -~ ~ a re  asympto t ica l ly  c lose  to a 
diffusion equation of the following fo rm:  

o-7 -~- Y - ~  = 4Y' "%2 ,~l? 0~ (2.6) 

3. We ca lcula te  quantity a n which en te r s  the express ion  for  the diffusion coeff ic ient .  With this a im 
we subst i tu te  the function X n d e t e r m i n e d  f rom Eq. (2.4) into the integrand of (2.3). We have  

1 
l d 1 

= - - ~ - j  [ 0  (~) - ~1 dn 
0 

(3 .z) 

Integrat ing by pa r t s ,  we obtain 

1 

0 

(3.2) 

The coeff icient  D ,  equals  the sum of the molecu la r  and turbulent  diffusion coeff icients  

D,  = D/Do  + D t/Do (3.3) 

In a turbulent  flow the t r a n s f e r  of m a t t e r ,  heat ,  and impulse  takes  place a lmos t  with equal intensi ty.  
T h e r e f o r e ,  according  to the well-known Reynolds analogy, the coeff icients  cha rac te r i z ing  the intensi ty  of 
t r a n s f e r  of these  quantit ies a r e  taken as  equal .  

On the bas i s  of this analogy, using the Bouss inesq  express ion ,  we wri te  the coeff icient  of radia l  
turbulent  diffusion in the f o r m  

D t = _ ~ [@' (~)1-1 (3.4) 

With the express ions  
fo rm:  

(3.1), (3.4) taken into account,  we wri te  the express ion  for  a n in the following 

1 

= u,~a x~ (l)] ~ [~-: I ~x~' (~) 0 '  (~) d ~ .  -VD? 
o 

4. The unknown solution of the S t u r m - L i o u v i l l e  p rob lem,  Xn0?) ,  en te r s  the express ion  for  ca lcu la t -  
ing the quantity a n and the other  expres s ions  der ived  above.  The difficulty of solving the  prob lem (2.4) is 
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caused by the fact that the radial  coefficient of turbulent diffusion depends on the variable z, The exper i -  
ments by Laufer  and Nunner [12], as well as the investigations ca r r i ed  out in [13, 14], allow us to establish 
the cha rac t e r  of this dependence. The coefficient of radial  diffusion var ies  in the mos t  substantial manner 
c lose to the inner sur face  of the tube, in a region which is the na r rower ,  the l a rge r  is the Reynolds number ,  
while in the core  of the turbulent flow occupying an overwhelming proportion of the pipe c ross  section the 
coefficient of turbulent diffusion is a lmost  constant .  Such a cha rac te r  of dependence of D,  on z provides 
justif ication, when solving the problem (2.4), for taking the coefficient of radial  turbulent diffusion in the 
whole section of the pipe as constant  and equal to its mean value in the section of the pipe. It is natural  to 
take the typical  value of the diffusion coefficient as its mean value in the section of the pipe, i.e., to take 
D .  equal to unity. For  a constant  value of D .  we easi ly find the eigenfunctions and eigenvalues of the 
S t u r m - L i o u v i l l e  problem (2.4). We have 

X. (z) = Yo (2~z'/~), Y~ (a~) = 0 (4.1) 

Here Jv (z), v = 0, 1 are  Bessel  functions of the f i rs t  kind. The square  of the no rm of the eigenfunc- 
tions thus found equals 

I, x~  11 ~ = 1/jo~ ( ~ )  

We calculate the effective diffusion coefficient.  We have 

cr 2 

K = 1 6 Y ~  ~-I % u*4a2 D--~ %~]~ (%) = 4Y~ u~D0~ 

1 

v u  (n) dq] X ~ al---'W[ln -~ u*~aJ~ f " ] ' l ( g n ' ) ( D '  (4.2) 

In this expression the second t e rm inside the square  brackets  is due to molecular  diffusion. The f irs t  
eigenvalue is (~1 = 3.83, the values of the subsequent roots  are  7.02, 10, 17, etc.  The eigenvalues inc rease  
so rapidly that the computation of the se r ies  (4.2) can be confined to the f i rs t  t e rm .  We have 

1 

E + Do ~ "-~Do~al  ~ u.'Za.l'o (az) (q )  
o 

(4.3) 

To calculate the integral  inside the square brackets ,  we must  choose a profile of the averaged velocity 
of the turbulent flow. We use,  for example,  the un iversa l  law of velocity distribution for which the function 
4~ (~/) has the form 

(I)(~)---- U 0 / U + ( 2 . S u , / U )  • l n ( l - - q )  

Here U 0 is the veloci ty of flow on the axis of the pipe. 

We substitute the derivative of this function into the integrand and c a r r y  out integration by a n u m e r i c -  
al method.  We obtain 

1 

~]1 (3.83~1) (1)' 01) d~ ~ -- 1.65u,. / U (4.4) 
0 

Taking into account this resul t ,  and also the fact that J0(3.83) ~ -0.401, we rewri te  the expression 
{4.3) as follows: 

K 
---ffZo ~ . 4 Y ~  u,aa~ (I+4.12 D )2 

(3.83) U U~Do 2 u .a (4.5) 

To calculate the effective diffusion coefficient according to the expression (4.5), we must  find the 
value of the coefficient D 0. To determine the value of D o we use the profile of the coefficient of radial  turbu-  
lent diffusion f rom Tay lo r ' s  paper .  In this case  

Do=0.052 u , a + D  
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Substituting the value of D O into the expression (4.5), we obtain the expression for the dimensionless 
value of the effective diffusion coefficient 

= f fTI  i = 5.2 i --  30.4 {~.,~-'l']z v S0t~e~8/ j , S c = - ~  (4.6) 

Here X is the hydraul ic  res i s tance .  This expression differs f rom the well-known Taylor  expression 
by the additional t e r m  which takes into account the dependence of the effective coefficient on the Schmidt 
n u I n b e ,  r .  

The method used to derive the expression (4.6), in contras t  to the method used in Tay lo r ' s  work, is 
not connected with the choice of this or that law of distribution of the averaged velocity.  This c i rcumstance  
allows us to genera l ize  the relat ionship thus found for the region of large  Reynolds numbers  for which the 
velocity distribution and hydraul ic  res i s tance  essent ial ly  depends on the roughness.  With this aim, just  as 
it was done in [15], we r ep resen t  the coefficient of radial  turbulent diffusion in the form of a sum of the co -  
efficient of turbulent diffusion in a smooth pipe and the coefficient of turbulent diffusion depending on the 
roughness .  The la t ter  coefficient has the fo rm 

7.8 t ~ '~-V,1 A 
Ds-~O.39u.a e --~-~-{~-) ] (0.03+0.07~}) 8----T (4.7) 

Here s is the re la t ive  roughness .  

The average  value of this coefficient for a c ross  section of the pipe is 

I" 7.8 ~ ~, ~ - ' / , ' 1  
Dos 0 .265u.aL~--~-(T ) J (4.8) 

Taking into account this equation, we wri te  the coefficient D o for flow in a rough pipe as follows: 

[W} 1] u.a (4.9) 

This expression is substituted into (4.5). As a resul t ,  we obtain the equation for the effective diffusion 
coefficient which genera l izes  the Taylor  expression for the case  of flow in rough pipes 

- -  /~ =5-2~--'[1+5.1(8-78"~'-'/ ' ' '-~-=~-/Y) )J (4.10) K . 2aU 

The value of the hydraul ic  res i s t ance  for various Reynolds numbers  and pa ramete r s  of relative rough-  
ness  is r ep resen ted  in the form of tables in [15J. Numerous express ions  for the hydraulic res i s tance  of dif-  
ferent  tubes are  presented in the book [16]. 

5. Taking into account the express ion derived above for the effective coefficient of turbulent diffusion 
(4.5) and also the rapid growth in the eigenvalues an ,  we write Eq. (2.5) in the following form (the molecular  
t r ans fe r  is not taken into account) 

- ~ 4 - Y - ~  = x  2 exp - - ~ 1 2 ( x - s )  O~e 
0 

~42 ~ 4u, 4a~ y~ 
aa~U2Do~ 

In a coordinate sys tem moving with the mean veIociW of the flow, Eq. (5.1) has the form 

(5.1) 

0"-~= x~ exp - - ~ 1 2 ( ~ - s )  ~ a s ,  z = ~ - -  Y'~ (5.2) 
o 

Here  z is the distance in the moving coordinate sys tem.  We differentiate with respec t  to ~- the t e rms  
on the left and right sides of Eq. (5.2). As a resul t  of some simple t ransformat ions  we obtain the following 
equation: 

0~'0 .~_ ~1 ~ O0 = ~2 0~0 
Ov 2 -~" Oz~ (5.3) 
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This is the so -ca l l ed  t e legraph  equation which in the given case  desc r ibe s  the dis t r ibut ion of the mean  
concentra t ion in the sect ion of the pipe.  In con t ra s t  to the diffusion equation of Tay lo r ,  Eq. (5.3) is of the 
hyperbol ic  type .  

F r o m  the solution of this equation we obtain the final veloci ty  of propagat ion of the admixture  toward 
both s ides  f r o m  the ze ro  sec t ion .  This  veloci ty equals ~ .  

I t  can be shown that  the continuous pa r t  of the solution of Eq. (5.3) d i f fers  f rom the solution of T a y l o r ' s  
equation at the beginning of the mixing p r o c e s s ,  when T < 1. This d i f ference  is the m o r e  substant ia l ,  the 
s m a l l e r  is r .  For  a mixing p r o c e s s  in main pipe l ines ,  where  concentrat ion distr ibution for  ~" >> 1 is of 
p rac t i ca l  in te res t ,  this d i f ference  between the distr ibution in the initial s tage of the p roces s  is not i m p o r t -  
ant .  T h e r e f o r e  we can use  T a y l o r ' s  model ,  making use  of the express ion  (4.10) der ived he re  for  the e f -  
fect ive  coeff ic ient .  However ,  when invest igat ing the p r o c e s s  of mixing in pe t rochemica l  r e a c t o r s  of a 
tubular  type,  where  the t ime  of the mixing p r o c e s s ,  T, is comparab le  with unity, it is advisable  to use  the 
solution of the d i spe r s ion  equation (5.3). The fo rm of the solution of Eq. (5.3) depends on the fo rm of the 
signal  at the input of the r e a c t o r .  However ,  in any pa r t i cu la r  case  the finding of the solutions p resen t s  no 
spec ia l  d i f f icul t ies .  
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